MAETok(Masked Autoencoders Tokenizer)是卡内基梅隆大学、香港大学、北京大学等机构推出的扩散模型的新型图像标记化方法。MAETok基于掩码建模(Mask Modeling)训练自编码器(AE),在编码器中随机掩盖部分图像标记,用解码器重建标记的特征,学习到更具区分性的语义丰富潜在空间。MAETok的核心优势在于能生成高质量图像,显著提升训练效率和推理吞吐量。在实验中,MAETok使用128个标记,能在ImageNet 256×256和512×512分辨率上实现与以往最佳模型相当甚至更优的生成性能,证明了在高分辨率图像生成中的有效性。

(图片来源网络,侵删)

(图片来源网络,侵删)
全部评论
留言在赶来的路上...
发表评论