IterComp是一个由清华大学、北京大学、LibAI Lab、中国科学技术大学、牛津大学和普林斯顿大学的研究人员联合推出的文本到图像生成框架。基于迭代反馈学习机制,聚合多个扩散模型的组合生成偏好,全面提升模型在处理复杂组合任务时的综合能力。IterComp首先构建一个包含多个开源模型的图库,模型在属性绑定、空间关系和非空间关系等不同方面表现出各自的优势,基于模型的偏好训练奖励模型,用迭代优化策略逐步提升基础扩散模型的组合生成能力。这种方法不仅提高生成图像的质量和准确性,且没有增加额外的计算开销,让IterComp在多类别对象组合和复杂语义对齐方面超越现有的最先进方法。


全部评论
留言在赶来的路上...
发表评论