IFAdapter是一种新型的文本到图像生成模型,由腾讯和新加坡国立大学共同推出。提升生成含有多个实例的图像时的位置和特征准确性。传统模型在处理多实例图像时常常面临定位和特征准确性的挑战,IFAdapter通过引入两个关键组件外观标记(Appearance Tokens)和实例语义图(Instance Semantic Map)解决问题。外观标记用于捕获描述中的详细特征信息,实例语义图则将特征与特定空间位置对齐,增强模型对实例特征的控制能力。IFAdapter的设计支持作为一个即插即用的模块,轻松集成到各种预训练的扩散模型中,无需重新训练,能为不同的社区模型提供灵活的空间控制能力。

IFAdapter – 腾讯和新加坡国立大学联合推出的文本到图像生成模型  第1张
(图片来源网络,侵删)
IFAdapter – 腾讯和新加坡国立大学联合推出的文本到图像生成模型  第2张
(图片来源网络,侵删)